

1. Corpus-based Word Relatedness

- Estimating word relatedness is essential in NLP, and in many other related areas.
- Corpus-based measures have their advantages over knowledge-based supervised measures.
- Corpus-based measures are not *fairly* comparable when different corpora are used.

3. Notation Used

Notation	Description			
$C(w_1\cdots w_n)$	frequency of the <i>n</i> -gram $w_1 \cdots w_n$,			
	where $n \in \{1, \cdots, 5\}$			
$D(w_1\cdots w_n)$	number of web documents having n -			
	gram, $w_1 \cdots w_n$, where $n \in \{1, \cdots, 5\}$			
V	total number of uni-grams in Google			
	<i>n</i> -grams			
N	total number of web documents used			
	in Google <i>n</i> -grams			
C_{\max}	$\max(\{C(w_i)\}_{i=1}^{ V })$			
$M(w_1, w_2)$	number of tri-grams that start with w_1			
	and end with w_2 (say, M_1)			
$M(w_2, w_1)$	M_2			
$\mu_T(w_1, w_2)$	$\frac{1}{2} \left(\sum_{i=3}^{M_1+2} C(w_1 w_i w_2) + \sum_{i=3}^{M_2+2} C(w_2 w_i w_1) \right)$			
X	$= \frac{\mu_T(w_1, w_2) C_{\max}^2}{C(w_1) C(w_2) \min(C(w_1), C(w_2))}$			
Y	$= \frac{\min(\hat{C}(w_1), \hat{C}(w_2))}{C_{\max}}$			

Comparing Word Relatedness Measures Based on Google *n*-grams

DALHOUSIE UNIVERSITY Aminul Islam, Evangelos Milios, Vlado Kešelj Inspiring Minds islam@cs.dal.ca, eem@cs.dal.ca, vlado@cs.dal.ca

4. Common Corpus Used

Google *n*-grams **Examples** of Google tri-grams data: $C(w_1w_2w_3)$ $w_1 \, w_2 \, w_3$ $3,\!683,\!417$ he was a 563,471 he was an 121he was am

he was awesome

5. Mapping: web search \Rightarrow corpus

 $7,\!520$

 $D(w_1 \cdots w_n) \leq C(w_1 \cdots w_n)$ as an *n*-gram may occur multiple times in a single document

Considering the lower limits of $C(w_1)$ and $C(w_1w_2)$ Two assumptions: (1) $D(w_1) \approx C(w_1)$ and $(2) D(w_1w_2) \approx C(w_1w_2)$

6. Corpus Based Measures

Simpson Coefficient $(w_1, w_2) =$

 $\frac{D(w_1w_2)}{\min(D(w_1), D(w_2))} \approx \frac{C(w_1w_2)}{\min(C(w_1), C(w_2))}$

Jaccard Coefficient $(w_1, w_2) =$

 $D(w_1w_2)$ $C(w_1w_2)$ $\frac{1}{D(w_1) + D(w_2) - D(w_1w_2)} \approx \frac{1}{C(w_1) + C(w_2) - C(w_1w_2)}$

Dice Coefficient $(w_1, w_2) =$

 $\frac{2D(w_1w_2)}{D(w_1) + D(w_2)} \approx \frac{2C(w_1w_2)}{C(w_1) + C(w_2)}$

Normalized Google Distance (NGD) $(w_1, w_2) =$

 $\max(\log D(w_1), \log D(w_2)) - \log D(w_1w_2)$ $\log N - \min(\log D(w_1), \log D(w_2))$ $\approx \frac{\max(\log C(w_1), \log C(w_2)) - \log C(w_1w_2)}{\log N - \min(\log C(w_1), \log C(w_2))}$

Pointwise Mutual Information (PMI) (w_1, w_2)

	$D(w_1w_2)$		$C(w_1$	(w_2)
$=\log_2\left($	$\left(\underline{N} \right)$	$\approx \log_2$		
	$\left(\frac{D(w_1)}{D(w_2)} \right)$		$\sum C(w_1)$	$C(w_2)$
	N N		N	N

Relatedness	Based on	Tri-grams	$(\mathbf{RT})(w_1, w_2)$
ſ	$\frac{\log X}{-2 \times \log Y}$	if $X > 1$	
= {	$\frac{\log 1.01}{-2 \times \log Y}$	if $X <= 1$	
	0	if $\mu_T(w_1, w_2)$	(2) = 0

• Several corpus-based word relatedness measures have been implemented on the Google corpus and have been *fairly* evaluated on benchmark datasets.

• Mapping between a web search engine and the Google corpus using some assumptions.

• Discussed corpus-based measures are language and domain independent.

- Psychological Review, 104(2):211-240.

• Li's 30 sentence pairs [4] are used

- Each sentence pair is rated by 32
- The correlation coefficients of text similarity measure [5] (based on the discussed word relatedness measures) with the human judges are

[1] Rubenstein et al. (1965). Contextual correlates of synonymy. Communications of the ACM, 8(10):627-633. [2] Miller et al. (1991). Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1):1-28. [3] Landauer et al. (1997). A solution to plato's problem.

[4] Li et al. (2006). Sentence similarity based on semantic nets and corpus statistics. IEEE TKDE, 18:1138–1150. [5] Islam et al. (2012). Text Similarity using Google Trigrams. In: Proc. of CAI'12, 312-317