

Proximity based one-class classification with Common N-Gram dissimilarity for authorship verification task

Magdalena Jankowska, Vlado Kešelj and Evangelos Milios

Faculty of Computer Science, Dalhousie University September 2014

"The Cuckoo's Calling"

2013 detective novel by Robert Galbraith

Example

"The Cuckoo's Calling"

2013 detective novel by Robert Galbraith

Question by *Sundays Times* Was "The Cuckoo's Calling" really written by J.K. Rowling?

Peter Millican and Patrick Juola requested (independently) to answer this question through their algorithmic methods

Results indicative of the positive answer

J. K. Rowling admitted that she is the author

Authorship verification problem

Authorship verification problem

Motivation

Applications:

Forensics Security Literary research

Our approach to the authorship verification problem

- Proximity-based one-class classification. Is *u* "similar enough" to A?
- Idea similar to the k-centres method for one-class classification
- Applying CNG dissimilarity between documents

Common N-Gram (CNG) dissimilarity

Proposed by Vlado Kešelj, Fuchun Peng, Nick Cercone, and Calvin Thomas.

N-gram-based author profiles for authorship attribution. In Proc. of the Conference Pacific Association for Computational Linguistics, 2003.

Proposed as a dissimilarity measure

of the Common N-Gram (CNG) classifier for multi-class classification

Successfully applied to the authorship attribution problem

Strings of n consecutive characters from a given text

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do:

Alice's Adventures in the Wonderland by Lewis Carroll

n=4

4-grams

Alic

Character n-grams

Strings of n consecutive characters from a given text

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do:

Alice's Adventures in the Wonderland by Lewis Carroll

n=4

4-grams

Alic lice

Character n-grams

Strings of n consecutive characters from a given text

A ice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do:

Alice's Adventures in the Wonderland by Lewis Carroll

n=4

4-grams

Alic lice ice_

Character n-grams

Strings of n consecutive characters from a given text

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do:

Alice's Adventures in the Wonderland by Lewis Carroll

n=4

4-grams

Alic lice ice_

ce_w

Profile

a sequence of L most common n-grams of a given length n

Profile

a sequence of L most common n-grams of a given length n Example for n=4, L=6

document 1: *Alice's Adventures in the Wonderland* by Lewis Carroll

profile P 1					
n-gram	am normalized frequency f1				
_the	0.0127				
the_	0.0098				
and_	0.0052				
_ a n d	0.0049				
ing_	0.0047				
to	0.0044				

Profile

a sequence of L most common n-grams of a given length n

Example for **n=4, L=6**

document 1: *Alice's Adventures in the Wonderland* by Lewis Carroll

document 2: *Tarzan of the Apes* by Edgar Rice Burroughs

profile P 1			
n-gram	normalized frequency <mark>f</mark> 1		
_the	0.0127		
the_	0.0098		
and_	0.0052		
_ a n d	0.0049		
ing_	0.0047		
to	0.0044		

pro	ofile <mark>P</mark> 2
n-gram	normalized frequency f2
_the	0.0148
the_	0.0115
and_	0.0053
of	0.0052
_ a n d	0.0052
ing_	0.0040

Profile

a sequence of L most common n-grams of a given length n

Example for **n=4**, **L=6**

document 1: *Alice's Adventures in the Wonderland* by Lewis Carroll

document 2: *Tarzan of the Apes* by Edgar Rice Burroughs

profile P 1				
n-gram	normalized frequency f1			
_the	0.0127			
the_	0.0098			
and_	0.0052			
_ a n d	0.0049			
ing_	0.0047			
to	0.0044			

CNG dissimilarity between these documents

$$D = \sum_{x \in P_1 \cup P_2} \left(\frac{f_1(x) - f_2(x)}{\left(\frac{f_1(x) + f_2(x)}{2}\right)} \right)^2$$

where $f_i(x) = 0$ if x does not appear in P_i

profile P 2				
n-gram	normalized frequency f2			
_the	0.0148			
the_	0.0115			
and_	0.0053			
of	0.0052			
_ a n d	0.0052			
ing_	0.0040			

Proximity-based one-class classification: dissimilarity between instances

Proximity-based one-class classification: dissimilarity between instances

Proximity-based one-class classification: dissimilarity between instances

Proximity-based one-class classification: proximity between a sample and the positive class instances

Proximity-based one-class classification: thresholding on the proximity

Iff M(u, A) less than or equal to a threshold θ : classify u as belonging to A

Obtained by linear scaling the M(u, A) measure:

```
the threshold \theta \rightarrow 0.5
```

with a **cut-off** α at $\theta \pm \alpha$: $M(u, A) < \theta - \alpha \rightarrow 1$ $M(u, A) > \theta + \alpha \rightarrow 0$

Parameters

Parameters of our method:

- **n** n-gram length
- L profile length: number of the most common n-grams considered
- θ threshold for the proximity measure M for classification

Proximity-based one-class classification: special conditions used

• Dealing with instances when only 1 "known" document by a given author is provided:

dividing the single "known" document into two halves and treating them as two "known" documents

- Dealing with instances when some documents do not have enough character n-grams to create a profile of a chosen length: representing all documents in the instance by equal profiles of the maximum length for which it is possible
- Additional preprocessing (tends to increase accuracy on training data):

cutting all documents in a given instance to an equal length in words

Ensembles

Ensembles combine classifiers that differ between each other with respect to at least one of the three document representation parameters:

- type of the tokens for n-grams (word or character)
- size of n-grams
- length of a profile

Aggregating results by majority voting or voting weighted by confidence score by a classifier

PAN 2013 – 9th evaluation lab on uncovering plagiarism, authorship, and social software misuse

Author Identification task:

Author Verification problem instances in English, Greek and Spanish

Competition submission: a single classifier

Parameters for the competition submission selected using experiments on training data in Greek and English:

- provided by the competition organizers
- compiled by ourselves from existing datasets for other authorship attribution problems

For Spanish: the same parameters as for English

	English Spanish	Greek
n (n-gram length)	6	7
L (profile length)	2000	2000
θ (threshold) if at least two "known" documents given	1.02	1.008
θ (threshold) if only one "known" document given	1.06	1.04

Results of PAN 2013 competition submission

	Entire set	English subset	Greek subset	Spanish subset	
Evaluation measure	(18 teams)				
F ₁ of our method	0.659	0.733	0.600	0.640	
competition rank	5 th (shared) of 18	5 th (shared) of 18	7 th (shared) of 16	9th of 16	
best F ₁ of other competitors	0.753	0.800	0.833	0.840	
Secondary competition evaluation measure: AUC (10 teams)					
AUC	0.777	0.842	0.711	0.804	
competition rank	1 st of 10	1 st of 10	2 nd of 10	2 nd of 10	
Best AUC of 9 other participants	0.735	0.837	0.824	0.926	

Evaluation of ensembles on PAN 2013 dataset (after contest)

Selected experimental results for ensembles	ected experimental Entire set English subset of the set English subset		Spanish subset		Greek subset			
	Acc.	AUC	Acc.	AUC	Acc.	AUC	Acc.	AUC
Our ensembles: weighted voi	ting, all	classifie	rs in the	e consido	ered pa	ramete	r space	
character based	0.729	0.764	0.833	0.830	0.800	0.859	0.567	0.582
character and word based	0.741	0.780	0.800	0.842	0.840	0.853	0.600	0.622
Our ensemble: weighted voting, classifiers selected based on performance on train data								
character and word based	0.788	0.805	0.800	0.857	0.840	0.853	0.733	0.687
Methods by other PAN'13 participants (different methods in different columns)								
best results over other participants	0.753	0.735	0.800	0.837	0.840	0.926	0.833	0.824

Difference in dataset as compared to PAN 2013:

- fewer known documents per problem (max 5), in particular two datasets where only one known document is given per problem
- more problems in testing and training set
- more data categories:

languages: English, Dutch, Spanish, Greek different genre categories

Our submission to PAN 2014 competition

- Separate ensemble for each category (language&genre combination)
- Ensembles selected based on performance on training data: fixed odd number of 31 classifiers with the best AUC
- Threshold set to the average of optimal thresholds of the selected classifiers on the train data (thresholds on which maximum accuracy achieved)

Results on PAN 2014 dataset: articles in Greek and Spanish

Greek articles						
our competition rank: 5 th of 13						
	Product of AUC and c@1	AUC	c@1			
our submission	0.497	0.731	0.680			
result of the top participant	0.720	0.889	0.810			
Spanish articles						
our competition rank: 3rd of 1	.3					
	Product of AUC and c@1	AUC	c@1			
our submission	0.586	0.803	0.730			
result of the top participant	0.698	0.898	0.778			

Results on PAN 2014 dataset: Dutch essays and reviews

Dutch essays					
our competition rank: 6 th of 13					
	Product of AUC and c@1	AUC	c@1		
our submission	0.732	0.869	0.842		
result of the top participant	0.823	0.932	0.883		
Dutch reviews					
our competition rank: 5 th of 13					
	Product of AUC and c@1	AUC	c@1		
our submission	0.357	0.638	0.560		
result of the top participant	0.525	0.757	0.694		

Results on PAN 2014 dataset: English essays and novels

English essays						
our competition rank: 12 th of 13						
	Product of AUC and c@1	AUC	c@1			
our submission	0.284	0.518	0.548			
result of the top participant	0.513	0.723	0.710			
English novels						
our competition rank: 13 th of 13						
	Product of AUC and c@1	AUC	c@1			
our submission	0.225	0.491	0.457			
result of the top participant	0.508	0.711	0.715			

Results on PAN 2014 dataset: entire data set

PAN 2014 entire data set					
our competition rank: 9 th of 13					
	Product of AUC and c@1	AUC	c@1		
our submission	0.367	0.609	0.602		
result of the top participant	0.490	0.718	0.683		

Discussion of results on PAN 2013 and PAN 2014 datasets

The ensembles of word-based and character based classifiers with weighted voting and that used the training data were tested on both PAN 2013 and PAN 2014 sets

- Our method is best suited for problems with at least 3 "known" documents (as it takes advantage of the pair of the most dissimilar known documents). On all evaluation sets in which the average number of known documents is at least 3 per problem, the results were satisfactory (corresponding to the 3rd or higher competition rank):
 - PAN 2013 entire set
 - PAN 2013 English set
 - PAN 2013 Spanish set
 - PAN 2013 Greek set
 - PAN 2014 Spanish articles set
- Problems with only one known documents are very challenging for our method. On the two datasets for which the number of known documents was 1 per problem, the results were very poor:
 - PAN 2014 English novels
 - PAN 2014 Dutch reviews
- More investigation is needed for explaining the extremely poor performance on PAN 2014 English essays. One special feature of this set is that is the only one where the authors are not native speakers

Conclusion

An intrinsic one-class proximity based classification for authorship verification

Evaluated on datasets of PAN 2013 and PAN 2014 author verification competition: competitive results for sets with the average number of documents of known authorship is at least 3

Poor results on problems with only 1 document of known authorship

Ensembles of character based and word based classifiers seems to work best

Future work

- Better adaptation of the method for the problems where only one known document is present
 - Investigating dividing known documents into more chunks instead of just two. This may also be applied and possibly improve the performance for cases when 2 known documents are present
- analysis of the role of word n-grams and character n-grams depending on the genre of the texts, and on the topical similarity between the documents

Thank you!